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Summary 

This paper examines the high- and low-frequency asymptotic consequences of the Kramers-Kronig relations 
which hold for the real and imaginary parts of the Fourier transform of the response of any linear causal system. 
By knowing or assuming the high- or low-frequency expansion of one of these functions, the corresponding 
asymptotic expansion of the other is easily determined, and furthermore the coefficients in this expansion may 
be determined by evaluating integrals that involve intermediate frequencies. The practical utility of the approach 
is demonstrated with examples from floating-body hydrodynamics and some new integral relations are derived 
and exploited. 

1. Introduction 

For the wide class of linear causal systems it is well known that the real and imaginary 
parts of the Fourier transform of the response function are not unrelated but satisfy the 
Kramers-Kronig relations (see Landau and Lifschitz [1], pp. 396-397). With a simple 
change of variable these relations reduce to one-sided Hilbert transforms, equations (1) 
and (2) in this paper, whose asymptotic consequences are discussed here for both high 
and low frequencies. For illustration the paper takes examples from floating-body 
hydrodynamics, where the added mass and damping are related by the Kramers-Kronig 
relations, although it is stressed that the method is generally applicable. By assuming the 
first few terms in the high-frequency expansion of the damping, the form of the 
high-frequency expansion of the added mass may be derived quite easily from (1) using 
Mellin transforms (see Ursell [2]). Some of the coefficients in this expansion are known 
explicitly whilst others may be calculated from integrals over the damping if they 
converge sufficiently well. The practical utility (or otherwise) of these integrals is 
demonstrated for the cases chosen. Furthermore, use of (1) and (2) together yields new 
integral relations for the added mass, which again may be exploited. 

Besides demonstrating the general method, the added mass and damping example is 
strongly motivated because direct numerical computation of these frequency-dependent 
parameters becomes impractical much beyond dimensionless wavenumber fl of 10 even 
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for special geometries (e.g. the sphere or cylinder chosen here). The alternative analytical 
approach of expanding the high-frequency problem gives useful results (see Simon [3]) 
although the method becomes increasingly difficult to apply for further terms in the 
expansion. It therefore seems appropriate to extract as much information as possible 
about the high-frequency behaviour from the Kramers-Kronig relations using the Mellin- 
transform method described here. The low-frequency asymptotic consequences may also 
be explored with the same method. However, since numerical or analytical methods (see 
Simon and Hulme [4]) work well for the low-frequency floating-body problem there seems 
little advantage in exploiting the new relationships derived. 

2. The Kramers-Kronig relations and their direct use 

When a body is forced to oscillate in an incompressible, inviscid and homogeneous fluid 
with a free surface, the fluid exerts a force on the body that is not generally in phase with 
the body acceleration. It is usual to define a dimensionless added-mass parameter Pm and 
a dimensionless damping parameter Pd as follows: 

component of force 180 ° out of phase with body acceleration 
Pm= (acceleration amplitude). (mass of fluid displaced) ' 

component of force 180 ° out of phase with the body velocity 
Pd= (acceleration amplitude). (mass of fluid displaced) 

Both quantities are dependent upon the dimensionless wavenumber of oscillation 
fl = Ka where K is the wavenumber and a is a typical body dimension (here chosen to be 
the radius of the cylinder or sphere). The wavenumber and frequency of oscillation are 
related by the dispersion relation (see Newman [5], chapter 6). 

Kotik and Mangulis [6] where the first to point out that these quantities are related by 
the Kramers-Kronig relations: 

(1) 

(2) 

where f denotes a principal-value integral. For ease of exposition, let us temporarily 
suppose that the first few terms in the asymptotic expansion of the damping coefficient 
are of the form (but see equation (32) later) 

N 
an Pa(fl) - Y'. ' ~  as B ~ oo. (3) 

n--1  

By use of Havelock's [7] wavemaker theory it is not difficult to find examples of 
flexible wavemaker motions that have high-frequency damping expansions of this form. 
For the half-immersed cylinder or sphere, used as examples here, the first term in the 
high-frequency expansion may also be calculated by wavemaker theory and the argu- 
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ments used in Hulme [8], which show that in heave these bodies have a leading term 
a4 / f l  4, while in sway the leading term is a2 / f l  2. The  next term in these expansions is 
actually logarithmic (its effect is discussed later) but this only changes the order of the 
error terms in the following (see later). 

Using MeUin transforms, the arguments used by Wong [9] and Ursell [2] then show 
that (1) and (3) give 

N N Ot n a n ~[~(~)-P~(~)]-- E T-ln~ g 
n = l  n ~ l  

as fl ~ oo, where 

folt  n -  1 a k °°In- 1 a k a~-- e a t ) -  7 at+ e~(t)- at, .>1, 
k = l  k = l  

and 

a 1 = f o l e d ( t )  d t + f l ° ° ( P d ( t ) - - ~ - ) d t ,  n = l  (4) 

Kotik and Mangulis [6] assume that a 1 = 0 and therefore 

ffe~( ) a l =  t dt ,  

as stated in Kotik and Mangulis and exploited by Greenhow [10] to give the high-frequency 
leading-order behaviour of the added mass. Wong's expression (equation (4)) gives the 
form of the expansion, and it is remarkable that the coefficients of logarithmic terms in 
the added mass are known from the (assumed known) coefficients in (3), the high- 
frequency behaviour of the damping. For example, for a swaying cylinder we have a 1 = 0, 
a 2 = 8 / ~ ' ,  giving 

P m ( f l ) - - P m ( o 0 ) =  ~.fl rr 2 - - - - -~  + . . .  asf l  ~ o0 

with 

a t fo~Pa(t) d t +  a2 = - -  + o ( . - : ) ,  P f0 I~ 
a 2 = tPd(t  ) d t  - a 2 In v + 0(~,-1).  (5) 

Here we assume that we know the damping Pal(t) for 0 ~< t ~< p with p > 1 and, for the 
error term, that the series (3) is valid for the first two terms. 

For a heaving cylinder a 1 = a 2 = a 3 ---- 0 and a 4 = 32/~r, giving 

a I a 2 a 3 3 2  I n  f l  a 4 e ~ ( # ) - e ~ ( ~ ) - -  ~ ~B: ~B 3 ~: /~4 ,~--q+... as/~-~ 
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with 

~0 p 
Ol 1 Pa(t)  dt  + a4 = _ _  + 0 ( ~ - 4 ) ,  

3v 3 

fo v 2 a4 a 3 = t Va(t ) dt  + - -  + O(v-2), p 

fo v a4 a 2 = tPa(t ) dt  + - -  + O(v-3) ,  
2v: 

a 4= t Pd(t)  d t - a  4 In v +  O(v-1) ,  

again with the same assumptions for the error-term estimation. 

(6) 

3. Use of equation (2) 

Let us consider use of (2) with the asymptotic form of (5). Then we are required to 
examine 

with 

f ( x )  = fo °° t-xg(t) dt  (7) 

g( t )  = ~r [ P , , ( o o ) -  Pm(t)]/v/-f 

or generally 

a~ In t ot 2 
t1+1/2 + a 2 t2+1/------ ~ + t2+l/------- ~ as t ~ 00, (8) 

N N 
g( t )  - ~_, ak / t  k+l/2 + ~_, a k In t / t  k+l/2 as t ~ 00. 

k - 1  k - 1  

Taking Mellin transforms, Ursell [11] shows that 

r ( ~ )  = O(~)~r cot ~ 

with 

(9) 

F(s )  = --Jff x ~ - l f ( x )  dx .  

The inverse transform gives 

1 
f c + ' ~ x - S G (  s )~  cot ~s ds  (10) 

/ ( x )  = ~ . c _ i ~  

where c is any constant chosen such that the contour lies to the left of any singularities of 
the integrand. In this case c < 1, and we choose ½ < c < 1 for definiteness when moving 
the integration contours later. 
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To investigate the high-frequency behaviour of f (x ) ,  we move the path of integration 
to the right across the poles determined by 

G(s)  = fo°°g(t)t ~-1 dt 

f o l g ( t ) f _ t  fool  a 1 a 2 1 n t  a2 ] = dt + g( t )  t3/2 t5/2 t5/2 t s-1 dt 

al a2 a2 (11) 
- ( s - l - ½ )  - ( s - 2 - ½ )  + ( s - 2 - ½ ) 2 "  

(Term-by-term integration is valid for R e ( s ) <  3/2.  Equation (11) is the analytic con- 
tinuation of G(s) for Re(s)  < 7/2.)  

cos[~r(s - n)] __- (s - n) -1 + O(s  - n) (12) 
~r cot 7rs=~ s i n [ ~ r ( s - n ) ]  

and 

x - ~ = ! x - ( s - a ) =  1 - - - [ 1 - ( s - a )  l n x + . . . ) ] .  
X a X a 

(13) 

Substituting (11)-(13) into (10) and moving the contour of integration to the right to 
extract the high-frequency behaviour give 

1 # c + 2 + i o o  - s  - " 
f ( x )  = z~r~ Jc -4-~_. [+2_ io  ° x G(s)Tr cot ~rs ds - (res at 1) - (res at 3 /2 )  

- (res at 2) - (res at 5 /2 )  

1 f ~ + 2 + i ~ - ,  ( s )c rco t  ds G(1) G(2) 
- 27ri " c + 2 - i o o  X G ~rs x x 2 

+~r cot~- + + xS/---- ~ , 

the last term arising from the double pole at s = 5/2.  The general result is as follows: if 

N O / n  N 
g ( t ) -  E tn . l /2  + E an In t 

n f f i l  n~l  tn+l/2 a s  I ----) 0 0 ,  

then 

fo N a ( n )  N an oOt_xg(t) d t _ _  ~_, xn +~r 2 Y', x,+1/2 asx---)oo. (141 f()__x = 
n f f i l  n f f i l  
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Applying (14) to (2) we obtain 

N 
ed(t ) - E 

n=l 

o(.) 
fin ~2fln-1/2 as fl--o o0. 

Thus equation (3) for the damping is recovered provided that 

G (n)  -= 0 for all n such that N >/n >/1. (15) 

Here G(s) is to be identified with its analytic continuation for s >i 3/2,  i.e. 

m-1 ) oo m-1 Ot k a k In t 
G(s)= folg(t)ts-l dt+ fl g ( t ) -  E tk+l/~-- ~ E tk+l/2 ts-l dt 

k=l  k=l  

m-1 m-1 
ak Y l  ak 

~" ( s - k - ½ )  + k=l = ( s -  k -  ½) 2 

Here m > s - ½ and integer, thus ensuring that the integral term converges. 
Of course, the validity of (15) relies on the validity of the expansion in (3). However, 

considering the case of a swaying sphere or cylinder, we know to leading order Pd(fl) -- 
O(/3 2) as 13 --, oo. Thus 

G(1) = f0 °° Pro(°°) - Pro(t) ~/~ d t = 0  (16) 

and 

o o  - -  - -  O i l  ]v~-dt - 2or 1 G(2)=Crfol[pm(°o)-Pm(t)]vltdt+crfl [Pro(~)  Pro(t) -~ 

= 0 .  (17) 

Equation (16) was first pointed out by Kotik and Lurye [12] and utilised by Greerdaow 
[10] whilst (17) appears to be new information. For heaving cylinders or spheres 
Pd(fl) -- O(f1-4) as fl ~ oo. Consequently (15) is certainly true when N = 1, 2, 3 and 4 in 
this case. Explicitly we have (16) and (17) and in addition: 

So 1 G(3)=Tr  [Pm(~)-Pm(t)]t3/2dt+~r Pm(~)--Pm(t) al a2 ]t3/2dt 
¢rt ¢rt 2 ] 

3 2a 2 = 0, (18) 

G(4) = q'rf01[pm(~ ) - Pro(t)] 15/2 dt 

~1 °° [ G1 ~2 + - & ( t )  2 
a3 ] 2al 2a  2 t 5/2 d t -  2a 3 
rrt 3 ] 5 3 

-- 0. (19) 
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4. Practical utility of equations (16)-(19) and numerical results 

The practical utility of (16) has already been demonstrated by Greenhow [10] who 
manipulates the equation to give 

1 f ~ P m ( t ) d t + o I l _ n _ ~ l + o ( l )  (20) 
2 P m ( ~ )  = Pro(P) "~ "~p "]0 ~t7 \ p ] 7 " 

Here it is assumed that Pro(t) is known for 0 ~< t ~< v and unknown for t > v but that (8) 
holds for t > v and a 1 = 0. The logarithmic error term is absent if a 2 = 0. It is remarkable 
that this equation gives the values of Pm(OO) quite accurately for cases of heaving or 
swaying spheres even for a limited range of known values of Pro(t). For example, for a 
swaying sphere Pro(v) with v = 5.0 is only about half of its infinite-frequency value, but 
using relation (20) gives Pro(m) to within 4% error. It is also noted in Greenhow [10] that 
further terms in the high-frequency expansion of the added mass cannot be obtained 
reliably from integrals of the added mass over a finite frequency range using (16). Making 
use of the asymptotic high-frequency expansion of the added mass (equation (8)), and 
after some manipulation, (17) can be written as 

a 1 = -~-~rP,,,(oo) -~ 477v JO Pm(t)viTdt a 2 + - -  + O(ln v/v 2) + O(v-2) .  
P 

(21) 

Although (21) contains error terms of the same order as Greenhow's [10] equation (14), 
the numerical results from (21) converge faster since they contain new information about 
the high-frequency behaviour of the added mass. We note that if the value of P , , (~ )  
calculated from (20) is used in (21), then the leading-error term will be O(ln v/v) or 
O(1/v), but sometimes P,,(oo) is known explicitly from related problems with a simpler 
free-surface condition (see, e.g., Newman [5], pp. 297-298). Notice also that a2, the 
leading coefficient in the damping at high frequency, is involved in (21), but this is 
assumed to be known. If, however, P,,(oo) calculated from (20) is used in (21) then it is 
not consistent to include the term in a 2. 

Equation (18) yields the next coefficient a 2 as 

Ot 2 
3Pm(O0) ~'V 2 f0 2, 1  2em( ) 477 Pm(t)t 3/2 d t -  

+O(ln  v/v  2) + 0(1 /v2) ,  (22) 

whilst (19) gives 

" - 3 v 3 P , . ( v )  
ot 3 = --ff-- pm ( oo ) p ~r t ) t  5/2 dt 

('n l (1 
- - -7  + O  u2 ] + O  ). (23) 

Again a 4 is assumed to be known. 
We note that using previously calculated values of Pm(oo) from (20) and a 1 from (21), 

gives leading-order error in (22) as O(u-1), whilst using a 2 calculated from (22) gives 
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Table 2. Coefficients in the expansion of the added mass of a half-submerged swaying circular cylinder 

a-L (Eq. (5)) a_~2 (Eq. (5)) P,.(oo) (Eq. (20)) a-L1 (Eq. (21)) 
qr qT q7 

Damping integrals Added-mass integrals 

1 1.0077 0.12252 0.69608 0.75380 
2 0.77420 -0.19113 0.48798 0.60940 
3 0.77333 -0.28844 0.43615 0.62495 
4 0.72409 -0.31951 0.41771 0.65124 
5 0.72275 -0.32524 0.41016 0.67224 
6 0.72361 -0.32044 0.40683 0.68750 
7 0.72502 -0.31127 0.40529 0.69871 
8 0.72645 -0.30049 0.40459 0.70697 
9 0.72777 -0.28935 0.40430 0.71314 

10 0.72891 -0.27845 0.40424 0.71762 
Shank~o¢ 0.74 - 0.73 
Co~eefion 

appfiedo¢ - -0.013 - - 
Simon oo 0.73789 - 0.40529 0.73789 

leading-order error in (23) as O(ln v/v). Clearly, calculating the coefficient a ,  from 
previously calculated ai's, i = 1 . . . . .  n - 1, will eventually fail to converge; in fact, for the 
heave case discussed above we cannot generate a 4 by using this method since the leading 
error is O(ln u). However, in this case it is not established that G(5 )=  0 and further 
information about the high-frequency form of the damping would be needed (see later). 
In the numerical results presented here the exact values of ai, i = 1 . . . . .  n - 1, have been 
used to calculate a , ,  but values obtained from either (5) or (6) do not give serious 
differences. 

It is stressed that in equations (20) to (23) only the first term in the series of (3) is 
assumed known, whereas actually the next term is logarithmic for the examples chosen 
(see later). This gives the leading error term as O(ln2v/v 2) in (21) and (23), while in (5) 
and (6) the error of O(v-" )  is replaced by an error of O(ln v/v"). 

Numerical results for a heaving or swaying sphere or cylinder are presented in Tables 1 
to 4, showing convergence or otherwise of the formula used. Also shown, where ap- 
propriate, are the results of improving the convergence using Shanks transforms (see 
Bender and Orszag [13], pp. 369-375) and the analytic results of Simon [3] who gives as 

oo: 

32 [1 + 4 Pa( f l ) -  ¢r~-----~ ~ ( l n  fl + 7 + In 

4( 16)  1 
Pm(fl) - 1 3~rfl 2 -  -~  f12 

+ 32 ( 19 

2 - 3)], 

( ' / r 2 )  1 32 4 -  
3~3 " ~  f13 

10 ~ 64 ln2fl 
+ - -  - 7 - 1 n  2] f15 3,n. 2 ,17 .3 

32 In B 
~2  ~4 

1 2 8 ( y + l n 2 - 3 ) ~ f f + O ( ~ - ~ 5 ) ~ r  3 

(24) 

(25) 
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~1 Or2 
v - -  (Eq. (5)) - -  (F.q. (5)) P,,,(oo) (Eq. (20)) 

Damping integrals 

a-! (Eq. (21)) 
7£ 

Added-mass integrals 

1 0.99642 0.03133 0.5775 
2 0.64144 -0.44775 0.3878 
3 0.57119 -0.61584 0.3192 
4 0.55022 -0.68737 0.2940 
5 0.54302 -0.71914 0.2831 
6 0.54052 -0.73264 0.2779 
7 0.53985 -0.73690 0.2753 
8 0.53995 -0.73614 0.2739 
9 0.54036 -0.73265 0.2731 

10 0.54087 -0.72776 0.2727 
Shanks o¢ - -0.74 - 
Correction 

appUedoo 0.5498 -0.49 - 
Simon o¢ 0.56 - 0.2732 

0.74729 
0.43895 
0.43628 
0.45730 
0.47661 
0.49169 
0.50309 
0.51164 
0.51826 
0.52340 
0.54 

0.56 

for  a heaving cylinder; 

8 [ 4 ( l n f l +  + l n 2  2)] B d ( f l )  -- --- ~ 1 + - ~  "y - , 

4 07 789 
era(B) ~2 ~ ~ 2 ~ 1 ~ 2 j  + °  , 

for  a swaying cylinder; 

27 [ l + ~ f l ( l n f l + T - 1 - 2 1 3 ) ]  J'~(B)- i- ~ 

with 13 = 0.79361, 

1 3 0.29831 
Pm(fl) 2 16fl f12 

for a heaving sphere, and 

Pd(fl)--~-~ 1 +  ( I n f l + T - - l + 1 4 )  

with 14 = - 0.92056, 

p m ( f l ) -  0 . 2 7 3 2 -  0.56--if- - ~ 3 ln____flfl f12 . ..1_ O (~22) 

for  a swaying sphere. 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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Looking at Tables 1-4 we see that the formulas used give good estimates for the 
coefficients in the expansion of the added mass except for that of the inverse-power term 
occurring with the logarithmic term, i.e. for a2/cr for sway and a4/~r for heave. Here 
convergence is slow and its improvement requires either numerical results for the 
damping byond fl = 10 or further terms in the high-frequency expansion of the damping 
as shown above. Applying the latter improvement and using Shanks transforms gives the 
row labelled "correction applied" in Tables 1-4. Convergence is still very slow and little 
confidence can be placed in these estimates. 

5. Further extension at high-frequency and low-frequency asymptotics 

From Simon's results we see that beyond the leading order in the high-frequency 
asymptotics of the damping, there are logarithmic terms. We therefore suppose that 

N an N lnfl 
Pd(fl)- E ~ + E bnfln as f l ~ o 0 .  (32) 

n = l  n f f i l  

Proceeding as in Section 2 with the use of Mellin transforms, equation (1) implies that 

N N 
a n ~t n E T-hi  E 

n ~ l  n = l  n f f i l  

with 

fol[ ~ l a k ~  lbk ln t ]  a n = Pd(t)- -~ t- ~ t n-1 dt 
k = l  k = l  

+ Pd(t)-- ~ --~ y tn-1 dt--~-bn" 
k = l  k f f i l  

(33) 

It is seen that the logarithmic terms in the damping give rise to ln2fl/fl 2 terms in the 
added mass, of known coefficient. This is seen to be consistent with (24) and (25). 

It would be possible to use (2) with this new form of the added mass at high frequency 
to give further integral relationships for the added mass as was done in Section 3. In view 
of the poor convergence of equations (21) for sway and (23) for heave, such new relations 
are not likely to have any practical utility. 

Let us now consider low frequency, where we suppose that 

N 

Pa(B) - Y'~ a,fl n as fl ~ oo. (34) 
n = 0  

Then applying the technique of Section 2 to (1) (but moving the contour of integration 
left across the poles) gives 

N N 

n - O  n = O  
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with 

an = fo P d ( t )  -- akt k t - " - z  dt  + P d ( t )  -- ak tk  t - ~ - 1  dt .  
k = l  

(35) 

The leading-order term in the added-mass expansion was considered by Kotik and 
Mangulis [6] in the cases when a 0 is either finite or zero. If a 0 = 0 then 

1 fo ~ Pd( t )  d t  P~(O) - Pm(oO) = -~ t (36) 

which is consistent with (35) and was utilised by Greenhow [10]. 
In principle we could use (35) to calculate the coefficients in the added-mass expansion 

at low frequencies from knowledge of the damping over the frequency range, or in the 
range v to oo with v decreasing until satisfactory convergence is obtained. However, in 
contrast to the high-frequency case, the low-frequency problem can be solved much more 
easily (see Simon and Hulme [4]), and in any case numerical methods are known to work 
well at low frequency. Thus in the practical sence, (35) yields only the form of the 
expansion and the coefficients of the logarithmic terms, but not the coefficients of the 
power terms. It is also possible to follow Section 3 and derive relationships for integrals 
involving the added mass; such results again have little practical significance. Finally it is 
noted that for some surface-piercing heaving bodies the leading-order term in the 
damping is very easy to calculate, being simple related to the waterplane area via the 
hydrostatic force (see Newman [5], p. 303-304, for an explanation and Kotik and 
Mangulis [6] for the results in the non-dimensional form used here). 

6. Conclusion 

It has been shown that the knowledge of the high-frequency form of the damping predicts 
the form of the high-frequency added mass. Some of the coefficients in this series (those 
for logarithmic terms) are simply related to those in the damping expansion, whilst the 
others (those for the inverse power terms) require integrals over the damping or added 
mass. Convergence of such integrals is good (except for the coefficient of the power term 
occurring with the first logarithmic term) and provides a practical method of extrapolat- 
ing numerical results to high frequency. Use of both parts of the Kramers-Kronig 
relations yields new integral relations for the added mass. 

Similar remarks also apply to low frequency, but for this hydrodynamic problem low 
frequency presents no special problems and can be treated directly. The method is, 
however, directly applicable and may be useful in a wide variety of linear, causal 
problems, not just to this example in hydrodynamics. 
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